Potensi Pengembangan Agen Antibakteri dari Senyawa Kompleks Logam Transisi di Indonesia

Nadia Cikita Handayani, Putri Nuzilla Shafira, Sasti Gona Fadhilah

Abstract


Saat ini, resistensi terhadap agen antimikroba telah menjadi masalah kesehatan masyarakat di seluruh dunia. Penyakit akibat infeksi bakteri masih menjadi masalah yang penting karena meningkatnya jumlah bakteri yang resistan terhadap berbagai obat menyebabkan munculnya berbagai penyakit baru. Salah satu agen antibakteri yang dapat dikembangkan potensinya dengan mekanisme yang berbeda dari agen antibakteri yang lain adalah senyawa kompleks logam. Beberapa logam terbukti dapat menjadi agen antibakteri karena memiliki fungsi biologis dan ditemukan dalam enzim dan kofaktor yang diperlukan untuk berbagai proses dalam tubuh. Beberapa metode yang dapat digunakan untuk mensintesis senyawa kompleks logam dengan sifat antibakteri antara lain metode larutan, solvothermal, hidrothermal, refluks, dan hidrogel. Naskah ini mengkaji perkembangan material berbasis SKLT (Senyawa Kompleks Logam Transisi) sebagai kandidat agen antibakteri terutama berbasis logam Cu(II) dan Zn(II) dengan ligan basa schiff. Penggunaan material berbasis SKLT sebagai agen antibakteri masih relatif baru namun memiliki potensi besar untuk mencegah perkembangan berbagai bakteri serta kemunculan penyakit baru akibat dari resistensi bakteri. Material ini dapat dikembangkan dari mineral alam yang banyak tersedia di Indonesia. Kajian ini dilakukan melalui tinjauan pustaka dimana artikel-artikel yang digunakan sebagai literatur utama diperoleh dari jurnal internasional berbahasa Inggris dengan tahun terbit mulai tahun 2010. Berdasarkan hasil kajian, SKLT berbasis logam Cu(II) dan Zn(II) dengan ligan basa schiff dapat dijadikan sebagai kandidat agen antibakteri dari berbagai jenis bakteri seperti E. coli, P. Aeruginosa, B. Subtilis, S. aureus, C. albicans, S.pneumoniae dan masih banyak lagi dengan hasil yang cukup efisiensi dan bervariasi. Selain itu kajian tentang sintesis SKLT yang ramah lingkungan skala massal tetap diperlukan.


Full Text:

PDF

References


M. Rizzotto, “Metal Complexes as Antimicrobial Agents,” in A Search for Antibacterial Agents, V. Bobbarala, Ed. InTech, 2012.

C. L. Ventola, “The Antibiotic Resistance Crisis”, P&T, p. 7.

World Health Organization and United Nation, “Climate And Health Country Profile – Indonesia.” 2015.

H. Parathon et al., “Progress towards antimicrobial resistance containment and control in Indonesia,” BMJ, p. j3808, Sep. 2017.

S. Desrini, “Resistensi Antibiotik, Akankah Dapat Dikendalikan ?,” JKKI, vol. 6, no. 4, pp. i–iii, Jan. 2015.

A. Dahesihdewi, A. K. Sugianli, and I. Parwati, “The surveillance of antibiotics resistance in Indonesia: a current reports,” Bali Med J., vol. 8, no. 2, p. 565, Aug. 2019.

L. Serwecińska, “Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health,” Water, vol. 12, no. 12, p. 3313, Nov. 2020.

U.S. Geological Survey, “Mineral commodity summaries 2020.” U.S. Geological Survey, 2020, [Online].

M. Claudel, J. V. Schwarte, and K. M. Fromm, “New Antimicrobial Strategies Based on Metal Complexes,” Chemistry, vol. 2, no. 4, pp. 849–899, Oct. 2020.

E. S. Hermawati, S. Suhartana, and T. Taslimah, “Sintesis dan Karakterisasi Senyawa Kompleks Zn(II)-8-Hidroksikuinolin,” J. Kim. Sains Apl., vol. 19, no. 3, pp. 94–98, Dec. 2016.

J. E. House, “Synthesis and reactions of coordination compounds,” in Inorganic Chemistry, Elsevier, 2020, pp. 769–815.

Q.-Q. Zhou, R.-Q. Miao, D.-F. Wang, and R.-B. Huang, “Syntheses, structures and properties of three novel Cu(Ⅱ) coordination compounds based on 4,4′-oxybisbenzoic acid,” Journal of Molecular Structure, vol. 1206, p. 127688, Apr. 2020.

D. K. Mahapatra, S. K. Bharti, V. Asati, and S. K. Singh, “Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications,” European Journal of Medicinal Chemistry, vol. 174, pp. 142–158, Jul. 2019.

S. A. Sadeek, W. A. Zordok, M. S. El-Attar, and M. S. Ibrahim, “Spectroscopic, structural, thermal and antimicrobial studies of 4,6-bis (4-chlorophenyl)- 2-oxo-1,2-dihydropyridine-3-carbonitrile with some transition metals,” Bull. Chem. Soc. Eth., vol. 29, no. 1, p. 75, Jan. 2015.

C. Surendra Dilip, V. Siva Kumar, S. John Venison, I. Vetha potheher, and D. Rajalaxmi (a) Subahashini, “Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes,” Journal of Molecular Structure, vol. 1040, pp. 192–205, May 2013.

R. S. Yamgar, Y. Nivid, S. Nalawade, M. Mandewale, R. G. Atram, and S. S. Sawant, “Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies,” Bioinorganic Chemistry and Applications, vol. 2014, pp. 1–10, 2014.

H. Snyder, “Literature review as a research methodology: An overview and guidelines,” Journal of Business Research, vol. 104, pp. 333–339, Nov. 2019.

S. A. Khan, S. A. A. Nami, S. A. Bhat, A. Kareem, and N. Nishat, “Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II),” Microbial Pathogenesis, vol. 110, pp. 414–425, Sep. 2017.

K. Kaur, R. Gupta, S. A. Saraf, and S. K. Saraf, “Zinc: The Metal of Life: Zinc: the metal of life…,” Comprehensive Reviews in Food Science and Food Safety, vol. 13, no. 4, pp. 358–376, Jul. 2014.

R. Seetharaj, P. V. Vandana, P. Arya, and S. Mathew, “Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture,” Arabian Journal of Chemistry, vol. 12, no. 3, pp. 295–315, Mar. 2019.

S. S. Tajudeen and G. Kannappan, “Schiff Base–Copper(II) Complexes: Synthesis, Spectral Studies and Anti-tubercular and Antimicrobial Activity,” Indian Journal of Advances in Chemical Science, p. 9, 2016.

M. Alias, H. Kassum, and C. Shakir, “Synthesis, physical characterization and biological evaluation of Schiff base M(II) complexes,” Journal of the Association of Arab Universities for Basic and Applied Sciences, vol. 15, no. 1, pp. 28–34, Apr. 2014.

G. G. Mohamed, M. A. Zayed, and S. M. Abdallah, “Metal complexes of a novel Schiff base derived from sulphametrole and varelaldehyde. Synthesis, spectral, thermal characterization and biological activity,” Journal of Molecular Structure, vol. 979, no. 1–3, pp. 62–71, Aug. 2010.

T. Rosu et al., “Synthesis, characterization and antibacterial activity of some new complexes of Cu(II), Ni(II), VO(II), Mn(II) with Schiff base derived from 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one,” Polyhedron, vol. 29, no. 2, pp. 757–766, Feb. 2010.

M. Shebl, S. M. E. Khalil, and F. S. Al-Gohani, “Preparation, spectral characterization and antimicrobial activity of binary and ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ce(III) and UO2(VI) complexes of a thiocarbohydrazone ligand,” Journal of Molecular Structure, vol. 980, no. 1–3, pp. 78–87, Sep. 2010.

A. A. S. Al-Hamdani and S. A. Shaker, “Synthesis, Characterization, Structural Studies and Biological Activity of a New Schiff Base- Azo Ligand and its Complexation with Selected Metal Ions,” Orient. J. Chem., vol. 27, p. 11, 2011.

A. A. El-Sherif and T. M. A. Eldebss, “Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene,”Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 79, no. 5, pp. 1803–1814, Sep. 2011.

L. S. Kumar, K. S. Prasad, and H. D. Revanasiddappa, “Synthesis, characterization, antioxidant, antimicrobial, DNA binding and cleavage studies of mononuclear Cu(II) and Co(II) complexes of 3-hydroxy-N’-(2-hydroxybenzylidene)-2-naphthohydrazide,” Eur. J. Chem., vol. 2, no. 3, pp. 394–403, Sep. 2011.

S. I. Al-Resayes, M. Shakir, A. Abbasi, Kr. M. Y. Amin, and A. Lateef, “Synthesis, spectroscopic characterization and biological activities of N4O2 Schiff base ligand and its metal complexes of Co(II), Ni(II), Cu(II) and Zn(II),” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 93, pp. 86–94, Jul. 2012.

N. S. Reddy, B. S. Shankara, P. M. Krishana, C. Basavaraj, and B. Mahesh, “Synthesis, Characterization, and Antibacterial Activity of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) Complexes of Schiff’s Base Type Ligands Containing Benzofuran Moiety,” International Journal of Inorganic Chemistry, vol. 2013, pp. 1–10, Apr. 2013.

R. Ahmadzadeh, M. Azarkish, and T. Sedaghat, “Synthesis, Spectroscopic Characterization, Thermal Analysis and Antibacterial Activity of Ni(II), Cu(II) and Zn(II) Complexes with Schiff bases Derived from β-Diketones,” J. Mex. Chem. Soc., vol. 58, no. 2, Oct. 2017.

R. Olar et al., “Insight on thermal, spectral, magnetic and biological behaviour of new Ni(II), Cu(II) and Zn(II) complexes with a pentaazamacrocyclic ligand derived from nicotinamide,” J Therm Anal Calorim, vol. 118, no. 2, pp. 1159–1168, Nov. 2014

N. G. Yernale and M. Bennikallu Hire Mathada, “Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety,” Bioinorganic Chemistry and Applications, vol. 2014, pp. 1–17, 2014.

A. A. S. Al-Hamdani and W. Al Zoubi, “New metal complexes of N3 tridentate ligand: Synthesis, spectral studies and biological activity,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 137, pp. 75–89, Feb. 2015.

A. C. Ekennia, D. C. Onwudiwe, and A. A. Osowole, “Spectral, thermal stability and antibacterial studies of copper, nickel and cobalt complexes of N -methyl- N -phenyl dithiocarbamate,” Journal of Sulfur Chemistry, vol. 36, no. 1, pp. 96–104, Jan. 2015.

A. A. Osowole, S. M. Wakil, E. Q. Okediran, and O. K. Alao, “Synthesis, Spectroscopic and Antimicrobial Properties of Some Metal(II) Complexes of Mixed Ligands -Nicotinic and N,N’-Dimethyldithiocarbamic Acids", Chemistry Journal, vol. 06, no. 01, p. 6, 2016.

M. Orojloo, P. Zolgharnein, M. Solimannejad, and S. Amani, “Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes derived from two Schiff base ligands: Spectroscopic, thermal, magnetic moment, electrochemical and antimicrobial studies,” Inorganica Chimica Acta, vol. 467, pp. 227–237, Oct. 2017.

R. Arif et al., “Synthesis, molecular docking and DNA binding studies of phthalimide-based copper(II) complex: In vitro antibacterial, hemolytic and antioxidant assessment,” Journal of Molecular Structure, vol. 1160, pp. 142–153, May 2018.

I. Ejidike, “Cu(II) Complexes of 4-[(1E)-N-{2-[(Z)-Benzylidene-amino]ethyl}ethanimidoyl]benzene-1,3-diol Schiff Base: Synthesis, Spectroscopic, In-Vitro Antioxidant, Antifungal and Antibacterial Studies,” Molecules, vol. 23, no. 7, p. 1581, Jun. 2018.

M. M. E. Shakdofa, F. A. El-Saied, A. J. Rasras, and A. N. Al-Hakimi, “Transition metal complexes of a hydrazone-oxime ligand containing the isonicotinoyl moiety: Synthesis, characterization and microbicide activities: hydrazone oxime ligand containing isonicotinoyl moiety,” Appl Organometal Chem, vol. 32, no. 7, p. e4376, Jul. 2018.

R. A. Shiekh, M. A. Said, M. A. Malik, and A. A. Hashmi, “Antimicrobial and antioxidant studies of novel mixed-metal complexes of benzoyl-aminoethanoic acid-nicotinamide: Microwave-assisted green synthesis, spectroscopic characterization and molecular modeling,” Trop. J. Pharm Res, vol. 17, no. 5, p. 865, May 2018.

M. A. Shaheen et al., “Synthesis and Antibacterial Evaluation of Cu(II), Co(II), and Mn(II) Complexes with Schiff Bases Derived from 5-Aminosalicylic Acid and o-Vanillin,” Russ J Gen Chem, vol. 89, no. 8, pp. 1691–1695, Aug. 2019.

K. Mounika, A. Pragathi, and C. Gyanakumari, “Synthesis¸ Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its Transition Metal Complexes,” J. Sci. Res., vol. 2, no. 3, p. 513, Aug. 2010.

B. Q. Ali, M. H. Said, and R. H. Jasim, “Synthesis, Characterization And Antibacterial Study Of Novel Schiff Base Ligand With Some Metal Ion Co(II), Ni(II), Cu(II) AND Zn(II),” Int. J. Chem. Sci, p. 15.

J. Devi, N. Batra, and R. Malhotra, “Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 97, pp. 397–405, Nov. 2012.

R. P. Saini, V. Kumar, A. K. Gupta, and G. K. Gupta, “Synthesis, characterization, and antibacterial activity of a novel heterocyclic Schiff’s base and its metal complexes of first transition series,” Med Chem Res, vol. 23, no. 2, pp. 690–698, Feb. 2014.

T. H. Al-Noor, M. R. Aziz, and A. T. A.- Jeboori, “Synthesis, Characterization And Antimicrobial Activities Of {Fe(II), Co(II), Ni(II), Cu(II),And Zn(II) }Mixed Ligand Complexes Schiff Base Derived From Ampicillin Drug And 4(Dimethylamino)Benzaldehyde With Nicotinamide,” IJTRA, vol. 2, no. 4, p. 7, 2014.

X.-J. Zhao, L.-W. Xue, and C.-X. Zhang, “Schiff Base Copper(II) and Zinc(II) Complexes: Synthesis, Structures, and Antimicrobial Activities,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 45, no. 4, pp. 516–520, Apr. 2015.

M. Galini, M. Salehi, M. Kubicki, A. Amiri, and A. Khaleghian, “Structural characterization and electrochemical studies of Co(II), Zn(II), Ni(II) and Cu(II) Schiff base complexes derived from 2-((E)-(2-methoxyphenylimino)methyl)-4-bromophenol; Evaluation of antioxidant and antibacterial properties,” Inorganica Chimica Acta, vol. 461, pp. 167–173, May 2017.

N. Revathi, M. Sankarganesh, J. Rajesh, and J. D. Raja, “Biologically Active Cu(II), Co(II), Ni(II) and Zn(II) Complexes of Pyrimidine Derivative Schiff Base: DNA Binding, Antioxidant, Antibacterial and In Vitro Anticancer Studies,” J Fluoresc, vol. 27, no. 5, pp. 1801–1814, Sep. 2017.

L. Kafi-Ahmadi, A. P. Marjani, and M. Pakdaman-Azari, “Synthesis, Characterization and Antibacterial Properties of N,N’-Bis(4-dimethylaminobenzylidene)benzene-1,3-diamine as New Schiff Base Ligand and its Binuclear Zn(II), Cd(II) Complexes,” S.Afr.j.chem., vol. 71, pp. 155–159, 2018.

W. Cao, Y. Liu, T. Zhang, and J. Jia, “Synthesis, characterization, theoretical and antimicrobial studies of tridentate hydrazone metal complexes of Zn(II), Cd(II), Cu(II) and Co(III),” Polyhedron, vol. 147, pp. 62–68, Jun. 2018.

A. Isnawati and R. Adelina, “Studi Docking Molekuler Catechin Gallate, Epicatechin Gallate, Gallocatechin Gallate, dan Epigallocatechin Gallate sebagai Obat Dislipidemia,” Jurnal Kefarmasian Indonesia, vol. 5, no. 1, pp. 25–32, May 2015.

F. Ladyani and M. Zahra, “Analisis Pola Kuman Dan Pola Resistensi Pada Hasil Pemeriksaan Kultur Resistensi Di Laboratorium Patologi Klinik Rumah Sakit Dr. H. Abdoel Moeloek Provinsi Lampung Periode Januari-Juli 2016,” Jurnal Ilmu Kedokteran dan Kesehatan vol. 5, p. 12, 2018.


Refbacks

  • There are currently no refbacks.