Theoretical Study of Fair-Trade Sustainable Hatcheries - Sizing for Cameroon and Indonesia

Authors

  • Charles Awono Onana Université des Montagnes, BP 208, Bangangté
  • jacques Hona Faculté des Sciences, Université Yaoundé I
  • Laurent-Charles Valdès Université Polytechnique Hauts-de-France

Abstract

Fair-trade sustainable hatcheries are designed for developing and emerging countries, such as Cameroon and Indonesia respectively so that they can use their often-generous sunshine at the service of harmonious development. These hatcheries are sustainable by their functioning exclusively from solar irradiation and nocturnal radiative emission. They are fair-trade because of their simplicity which allows them to be manufactured by many local professionals. They are developed so that the compensation in thermal losses is ensured by thermosiphon heat transfer loops thermo-regulated by bimetallic strip. These hatcheries are also designed for tropical or equatorial climatic hazards due to fine modeling of physical phenomena which can also be implemented by using a simple computer. An excellent economic return is expected.

Author Biographies

jacques Hona, Faculté des Sciences, Université Yaoundé I

Applied Mechanics laboratory

Laurent-Charles Valdès, Université Polytechnique Hauts-de-France

INSA Hauts de France

References

M. Djamin, A. S. Dasuki, A. Y. Lubis and

F. Alyuswar. 2001. Application of

photovoltaic systems for increasing

villager’s income, Renew. Energy, 22 (1-3)

-267.

S. O. Enibe. 2002. Performance of a

natural circulation air heating system with

phase change material energy storage,

Renew. Energy, 27 (1) 69-86.

J. M. Evans, S. de Schiller and F. Garreta.

Renewable energy and wildlife

conservation: Design and construction of a

solar incubator, Renew. Energy, 15 (1-4)

-367.

W. A. Beckman, L. Broman, A. Fiksel, A.

A. Klein, E. Lindberg, M. Schuler and J.

Thomton. 1994. TRNSYS the most complete solar energy system modeling and simulation software, Renew. Energy, 5 (1) 486-488.

S. A. Kalogirou and C. Papamarcou. 2000.

Modeling of a thermosiphon solar water

heating system and simple model, Renew.

Energy, 21 (3-4) 471-493.

A. Shariah, and B. Shalabi. 1997. Optimal

design for a thermosiphon solar water

heater, Renew. Energy, 11 (3) 351-361.

A. Shariah, D. Dajeh and N. Malhi. 1999.

Technical note Best connection scheme of

collectorodules of thermosiphon solar water

heater operated at high temperatures,

Renew. Energy, 17 (4) 573-586.

A. Lourens, H. van den Brand, R.

Meijerhof and B. Kemp. 2005. Effect of

Eggshell Temperature During Incubation on

Embryo Development, Hatchability, and

Posthatch Development, Poult. Sci., 84

-920.

A. A. Sfeir, G. Guarracino. 1981.

Ingénierie des systèmes solaires,

Technique & Documentation, Paris.

W. Swinbank. 1963. Long-wave radiation

from clear skies, Q. J. R. Meteorol. Soc., 89

-348.

A. Whillier. 1967. Design Factors

Influencing Solar Collectors in Low

temperature Engineering in: Applications of

Solar Energy, ASHRAE, New York.

J. Jouanneau. 1985. Pyromètres Ã

bilames in : Techniques de l’Ingénieur, R 2540, p9.

L.-C. Valdès. 2021. Cahier B4 - Modèles

théoriques in : Dossiers de l’AUFŒUDDÉ

(unpublished results).

A.-M. Bianchi, Y. Fautrelle, J. Etay. 2004.

Transferts thermiques, Presses

Polytechniques et Universitaires Romandes

Lausanne.

J. A. Dean. 1999. Lange’s Handbook of

Chemistry, Mc Graw-Hill, 15th Ed., p5.155.

L. Borel, D. Favrat. 2005.

Thermodynamique énergétique tome 1,

Presses Polytechniques et Universitaires

Romandes, Lausanne.

I. E. Idel’cik. 1979. Mémento des pertes

de charge, Eyrolles Éditeur, Paris,

Collection de la Direction des Études et

Recherches d’Électricité de France.

J. Legras. 1963. Précis d’analyse

numérique, Dunod, Paris.

Y. L’Hôte. 2005. Climatologie, in : Atlas

de la Province extrême-nord du Cameroun,

IRD Edition, Marseille, p21.

S. I. Kanbour and S. A. Kadhum. 1991.

Measurement of low speed thermosiphonic

flow, Renew. Energy, 1 (2) 223-230.

K. Chuawittayawuth and S. Kumar. 2002.

Experimental investigation of temperature

and flow distribution in a thermosiphon

solar water

heating system, Renew. Energy, 26

(3) 486-488.

M. Azzolin, A. Mariani, L. Moro, A.

Tolotto, P. Toninelli and D. Del Col. 2018.

Mathematical model of a thermosiphon

integrated storage solar collector, Renew.

Energy, 128 (A) 400-415.

A. Zerrouki, A. Boumédien and K.

Bouhadef. 2002. The natural circulation

solar water heater model with linear

temperature distribution, Renew. Energy,

(4) 549-559.

Downloads

Published

2022-12-01

Issue

Section

Articles